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ABSTRACT
For factoring polynomials in two variables with rational co-
efficients, an algorithm using transcendental evaluation was
presented by Hulst and Lenstra. In their algorithm, tran-
scendence measure was computed. However, a constant c is
necessary to compute the transcendence measure. The size
of c involved the transcendence measure can influence the
efficiency of the algorithm greatly.

In this paper, we overcome the problem arising in Hulst
and Lenstra’s algorithm and propose a new polynomial time
algorithm for factoring bivariate polynomials with rational
coefficients. Using an approximate algebraic number of high
degree instead of a variable of a bivariate polynomial, we
can get a univariate one. A factor of the resulting univari-
ate polynomial can then be obtained by a numerical root
finder and the purely numerical LLL algorithm. The high
degree of the algebraic number guarantees that this factor
corresponds to a factor of the original bivariate polynomial.
We prove that our algorithm saves a (log2(mn))2+ε factor
in bit-complexity comparing with the algorithm presented
by Hulst and Lenstra, where (n, m) represents the bi-degree
of the polynomial to be factored. We also demonstrate on
many significant experiments that our algorithm is practical.
Moreover our algorithm can be generalized to polynomials
with variables more than two. 1
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I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms; F.2.1 [Analysis of Algo-
rithms and Problem Complexity]: Numerical Algo-
rithms and Problems—Computations on polynomials
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1. INTRODUCTION
The factorization of polynomials is a classical problem in

computer algebra, which intervenes in many fields of appli-
cation. Historical surveys about it can be found in [14, 15,
16, 17, 9]. In 1982 the first polynomial-time algorithm for
factoring polynomials in one variable with rational coeffi-
cients was published (see [22]). The most important part
of this factoring algorithm is the so-called basis reduction
algorithm, i.e. the famous LLL algorithm due to Lenstra,
Lenstra and Lovász. The LLL algorithm has many impor-
tant applications, such as wireless communication, cryptog-
raphy (see [25]), GPS (see [1]) and so on. Since then many
generalizations of the original algorithm were published, for
example [23, 5, 21, 30, 31, 24, 19], which applied the LLL
lattice basis reduction technique to obtain polynomial time
algorithms for factoring multivariate polynomials over var-
ious fields including finite fields, local fields and number
fields. While there are also several other approaches for fac-
toring polynomials. For instance E. Kaltofen presented al-
gorithms for reducing the problem of finding the irreducible
factors of a bivariate polynomial with integer coefficients in
polynomial time to factoring a univariate integer polynomial
(see [12, 13]). In recent years, many more efficient methods
and algorithms have been introduced to factor polynomials.
For univariate polynomials, van Hoeij proposed some algo-
rithms (see [32, 33]) which follow the Berlekamp-Zassenhaus
algorithm and use the LLL algorithm to solve a combinato-
rial problem which has smaller coefficients and dimensions
rather than calculate coefficients of a factor of a univariate
polynomial with integer coefficients. The latest advances
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about the van Hoeij algorithm are presented in [28, 29]. For
multivariate polynomials, many references can be used. Us-
ing Hensel lifting and factor recombination technique, G.
Lecerf et al presented some efficient factoring algorithms
(see [2, 20, 4]). The differential equations was introduced to
factor polynomials by S. Gao et al in [9, 10]. Chèze and Gal-
ligo proposed an algorithm for computing an exact absolute
factorization of a bivariate polynomial from an approximate
one (see [3]). There are several well-known techniques and
variants for factoring bivariate polynomials. A classical and
generic one consists in localizing one of the two variables at
a suitable value, computing the local analytic factorization,
and discovering the recombinations into the rational factors
(see [2, 20, 4] and the references therein). In the particular
case of integer coefficients, it is desirable to adapt a more
direct strategy on the top of LLL.

Another aspect, the symbolic-numeric hybrid computa-
tion (see [7, 18, 35]) is at the intersection of applied and
traditional mathematics and at the intersection of numeri-
cal analysis and computer algebra. Many methods in this
field are playing more and more important role in computer
algebra including factorization.

In this paper we adopt the both ideas: the lattice reduc-
tion and the symbolic-numeric hybrid computation to solve
the problem of factoring a polynomial f(x, y) in Q[x, y]. A
method to obtain the minimal polynomial of an algebraic
number was given in [19]. Using this method, Hulst and
Lenstra presented an algorithm for factorization of polyno-
mials in two variables with rational coefficients by transcen-
dental evaluation (see [31]), in which transcendence measure
was needed. However, a constant c is necessary to com-
pute the transcendence measure. The size of c involved the
transcendence measure can influence the efficiency of the al-
gorithm greatly. In this paper, we overcome the problem
arising in [31] and present a new polynomial-time algorithm
for the factorization of bivariate polynomials with rational
coefficients. Furthermore the running time of our algorithm
is not only (log2(mn))2+ε times less than the algorithm in
[31] , where (n, m) represents the bi-degree of the polyno-
mial to be factored, but also less than or near to the running
time of the order factor() in Maple 11 for many examples
(see subsection 3.3). Moreover our algorithm can be gener-
alized easily to factor polynomials with variables more than
two. Although all of the intermediate computations are ap-
proximate, the input and output of our algorithm are both
polynomials with exact coefficients.

The outline of our algorithm to factor a bivariate polyno-
mial is as follows. First, we convert the bivariate polynomial
to be factored to a univariate one by substituting an approx-
imate algebraic number of high degree for a variable. After
the substitution we can compute approximations to the com-
plex roots of the resulting univariate polynomial, and look
for the minimal polynomial (over some algebraic extension
of Q) of one of the approximated roots. Lemma 1 guarantees
that this minimal polynomial corresponds to a factor of the
original bivariate polynomial and Lemma 6 guarantees this
polynomial is an irreducible one.

The rest of this paper is organized as follows. In Section
2 we present the notations and some preliminary lemmas.
We describe our algorithm and analyze the correctness and
the running time in Section 3, in which we also give several
examples in detail. And we draw a conclusion of this paper
in Section 4.

2. NOTATIONS AND PRELIMINARIES
In this section, we first give some notations. And then

we discuss the process of approximation in subsection 2.2.
We introduce lattice and LLL Algorithm in subsection 2.3.
In subsection 2.4, we give some preliminary lemmas which
implies our main algorithm.

2.1 Notations
For a bivariate polynomial f(x, y) =

∑
i

∑
j fi,jx

iyj in

Q[x, y], we denote by degx(f) and degy(f) its degree in
x and y respectively, ||f ||1 =

∑
i

∑
j |fi,j | its one norm,

‖f‖ = (
∑

i

∑
j |fi,j |2)1/2 its Euclid length, and height(f) =

maxi,j |fi,j | its height. Throughout this paper pλ(x) is the
minimal polynomial of an algebraic number λ over Q, i.e.
pλ(x) ∈ Z[x] is the unique primitive polynomial of smallest
degree such that pλ(λ) = 0. The degree and height of an
algebraic number are the degree and the height respectively
of its minimal polynomial. And we denote the degree of the
algebraic number λ by M , i.e. M = [Q(λ) : Q] = deg(pλ).
The real and imaginary parts of a complex number z will be
denoted Re(z) and Im(z) respectively.

As is well known that factoring a polynomial over Q[x, y]
is equivalent to factoring a primitive polynomial over Z[x, y].
Thus we denote by f(x, y) a primitive polynomial to be fac-
tored in Z[x, y] with degx(f) = n > 0, degy(f) = m > 0 for
the rest of this paper.

Now we are ready to describe the idea behind our algo-
rithm. We determine the irreducible factors of f in Z[x, y]
as follows: At first we use an algebraic number λ with de-
gree M > 2m(n + 1) instead of the variable y in f(x, y) and
compute an approximation to a root of f(x, λ). We denote
by α the root. And then we look for the minimal polynomial
of α over Q(λ), which is denoted by h(x, λ) ∈ Z[λ][x]. From
Lemma 1 we know h(x, y) is a factor of f(x, y) in Z[x, y].
According to Lemma 6 we know h(x, y) is irreducible. This
is repeated until all the factors are found.

Lemma 1. Let f(x, y) be an polynomial of degx(f) =
n > 0 and degy(f) = m > 0 in Z[x, y], λ an algebraic
number with degree M > (n+2)m. If h(x, y) ∈ Z[x, y] with
degx(h) ≤ n and degy(h) ≤ m satisfies h(x, λ) is a factor
of f(x, λ) in Z[λ][x], then h(x, y) is a factor of f(x, y) in
Z[x, y].

Proof. Since h(x, λ)|f(x, λ), we have

f(x, λ) = h(x, λ)g(x,λ). (1)

By the successive pseudo division of f(x, y) and h(x, y) with
respect to x, we have

I(y)tf(x, y) = q(x, y)h(x, y) + r(x, y), (2)

where I(y) = lcx(h(x, y)), q, h, r ∈ Z[x, y], t ∈ N, and
degx(r) < degx(h). So I(λ)tf(x, λ) = q(x, λ)h(x, λ)+r(x,λ).
Together with (1) we have

h(x, λ)(I(λ)tg(x, λ)− q(x, λ)) = r(x, λ).

Comparing the degrees of x in two sides gives r(x, λ) = 0.

Set r(x, y) =
∑degx(r)

i=0

∑degy(r)

j=0 ri,jx
iyj , then

degx(r)∑
i=0

(

degy(r)∑
j=0

ri,jλ
j)xi = 0. (3)
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From (2) we find

degy(I(y)) ≤ degy(h),

degy(r) ≤ degy(I(y)t) + degy(f)

≤ t · degy(h) + degy(f),

and

t ≤ degx(f)− degx(h) + 1 ≤ n + 1,

so degy(r) ≤ (n + 2)m < M . Thus ri,j = 0 from (3), i.e.

r(x, y) = 0. Simultaneously q(x, y) = I(y)tg(x, y), so h(x, y)
is a factor of f(x, y).

2.2 How to Approximate
To avoid intermediate expression swell problem we do not

work with λ, but work with some approximation λ̄ to λ.
Therefore, we denote by λ̄j for 0 ≤ j ≤ m approximations to
λj where λ̄0 = 1. We introduce the following notation for the
approximate value of f(x, y) at (x, λ): fλ̄ =

∑
i

∑
j fi,jx

iλ̄j .

In our algorithm we will work with fλ̄ instead of f(x, λ).
We may assume that fλ̄ has a root with absolute value at
most 1, or we consider the polynomial xnf( 1

x
, y) instead of

f(x, y).
Next we investigate how close λ should be approximated

to enable a zero of fλ̄ to be an approximation to a root of
f(x, λ).

Lemma 2. ([31], Lemma 1.3) Let f =
∑n

i=0 fix
i, f̄ =∑n

i=0 f̄ix
i ∈ C[x] be two polynomials of degree n > 0, and

let Δ = max0≤i≤n |fi− f̄i|. Suppose that f̄ has a root β ∈ C

satisfying |β| ≤ 1. Then there exists a zero α ∈ C of f such
that

|β − α| ≤ (
(n + 1)Δ

|fn| )1/n.

Proof. Since f(x) − f̄(x) =
∑n

i=0(fi − f̄i)x
i, we get

|f(β)| ≤ Δ
∑n

i=0 |β|i. Also |f(β)| = |fn|∏n
i=1 |β−αi|, where

α1, α2, . . . , αn are the zeros of f .

Lemma 3. Let f(x, y) =
∑n

i=0

∑m
j=0 fi,jx

iyj and λ be

an algebraic number. If f(x, λ) =
∑n

i=0 fix
i satisfy fn �= 0,

then

|fn| ≥ ((1 + m)height(f))1−M‖pλ‖−m,

where pλ is the minimal polynomial of λ and deg(pλ) =
M > m.

Proof. For any polynomial g =
∑d

i=0 gix
i ∈ Z[x] of de-

gree d with the complex roots z1, z2, . . . , zd we define the
Mahler measure M(g) by

M(g) = |gd|
d∏

j=1

max{1, |zj |}.

The Mahler measure of an algebraic number λ is defined
to be the measure of its minimal polynomial, i.e. M(λ) =
M(pλ).

Since 0 �= fn =
∑m

j=0 fn,jλ
j . Hence for the polynomial

fn(y) =
∑m

j=0 fn,jy
j ∈ Z[y], we have fn = fn(λ) �= 0. So

|fn| = |fn(λ)| ≥‖ fn(y) ‖1−M
1 M(λ)−m (4)

can be derived from Lemma 4. Since ||fn(y)||1 ≤ (1 +
m)height(fn(y)), M(λ) ≤ ‖pλ‖ (see [34], Theorem 6.31) and
height(fn(y)) ≤ height(f), combined with (4) the proof is
complete.

Lemma 4. ([26], lemma 3) Let α1, . . . , αq be algebraic
numbers of exact degree of d1, . . . , dq respectively. Define
D = [Q(α1, . . . , αq) : Q]. Let P ∈ Z[x1, . . . , xq] have degree
at most Nh in xh(1 ≤ h ≤ q). If P (α1, . . . , αq) �= 0, then

|P (α1, . . . , αq)| ≥‖ P ‖1−D
1

q∏
h=1

M(αh)−DNh/dh .

Proof. See Lemma 2 of [8].

Lemma 5. Let β be a 2−s−1-approximation2 of a zero of
absolute value at most 1 of fλ̄. For all k, if

|λk − λ̄k| < (2sn+n(n + 1)((1 + m)height(f))M ‖pλ‖m)−1,
(5)

then β is also a 2−s-approximation of a zero of f(x, λ).

Proof. Let f(x, λ) =
∑n

i=0 fix
i and fλ̄(x) =

∑n
i=0 f̄ix

i.
According to Lemma 2, there exists a root α of f(x, λ) such
that

|β − α| ≤ (
(n + 1) maxi |fi − f̄i|

|fn| )1/n.

According to Lemma 3 and

max
i
|fi − f̄i| ≤ height(f)

m∑
j=1

|λj − λ̄j |,

the proof easily follows from (5).

Remark 1. Suppose we have computed a 2−s−1- approx-
imation ᾱ ∈ Q(i) with |ᾱ| ≤ 1, to a root of fλ̄. According
to Lemma 5 ᾱ is also a 2−s-approximation to α ∈ C, a root
of f(x, λ). So

|α| ≤ 1 + 2−s (6)

since |α| − |ᾱ| ≤ |α− ᾱ| ≤ 2−s.

2.3 Lattice
In the rest of this paper, we denote by βij ∈ Q(i) for

0 ≤ i ≤ n and 0 ≤ j ≤ m the approximations to αiλj ,
where β00 = 1.

2.3.1 LLL Algorithm
For convenience of our description, we state the following

definitions and LLL Algorithm.

Definition 1. A lattice L ⊂ Rn is a set of the form

{
k∑

i=1

ribi : ri ∈ Z},

where b1, b2, . . . , bk are independent vectors in Rn. The lat-
tice L is said to be generated by the vectors b1, b2, . . . , bk

which form a basis for L, and k is the rank or dimension
of L.

Definition 2. Let b1, b2, . . . , bk ∈ Rn be linearly indepen-
dent and (b∗1, b

∗
2, . . . , b

∗
k) the corresponding Gram-Schmidt

orthogonal basis. Then b1, b2, . . . , bk is reduced if |b∗i |2 ≤
2|b∗i+1|2 for 1 ≤ i < n.

Remark 2. Roughly speaking, a reduced basis is a basis
made of reasonably short vectors which are almost orthog-
onal. There exist many different notions of reduction, such
as those of Hermite, Minkowski, Korkine-Zolotarev, Venkov,
Lenstra-Lenstra- Lovász, etc (see [27]).
2We call b is a 2−s-approximation of a if |a− b| < 2−s.
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In our algorithm we need the last one, LLL reduction,
which is implemented as follows.

Algorithm 1. (LLL, [34] ALGORITHM 16.10)
Input: Linearly independent vectors b1, b2, . . . , bk ∈ Zn

Output: A reduced basis (v1, v2, . . . , vk) of lattice L =∑k
i=1 Zbi.

1. for i = 1 to k

(a) vi ← bi

(b) compute the GSO (Gram-Schmidt Orthogonal-
ization)

(c) i← 2

2. while i ≤ k

(a) for j = i− 1 to 1

i. vi ← vi − 
μij�vj .

ii. update the GSO.

endfor

(b) if i > 1 and |v∗i−1|2 > 2|b∗i |2 then

i. exchange gi−1 and gi

ii. update the GSO

iii. i ← i− 1

else i ← i + 1

3. return (v1, v2, . . . , vk)

2.3.2 Relations between LLL Algorithm and Ours’
For each positive integer s, we define the lattice Ls ⊂

R(n+1)(m+1)+2 generated by b00, b01, . . . , b0,m, b10, . . . , bnm

which are the rows of the following [(n + 1)(m + 1)]× [(n +
1)(m + 1) + 2] matrix

Bs =

⎛
⎜⎜⎜⎝

1 0 0 . . . 0 2sRe(β00) 2sIm(β00)
0 1 0 . . . 0 2sRe(β01) 2sIm(β01)
...

...
...

...
...

...
0 0 0 . . . 1 2sRe(βnm) 2sIm(βnm)

⎞
⎟⎟⎟⎠.

We consider a map Z[x, y] → Ls. Corresponding to a
polynomial g(x, y) =

∑
i

∑
j gi,jx

iyj ∈ Z[x, y] of degx(g) ≤
n and degy(g) ≤ m, we have a vector in Ls defined by ḡ =∑

i

∑
j gi,jbij . We denote gβ =

∑n
i=0

∑m
j=0 gi,jβij , where

gi,j = 0 for degx(g) < i ≤ n or degy(g) < j ≤ m. Clearly
we have

‖ḡ‖2 = ‖g‖2 + 22s|gβ |2. (7)

We run the celebrated LLL algorithm on b00, b01, . . . ,
b0,m, b10, . . . , bnm to get a reduced basis of Ls. Suppose v̄
is the first vector of the reduced basis. Then we have (see
[22], Proposition (1.11))

‖v̄‖2 ≤ 2(n+1)(m+1)−1‖h̄‖2, (8)

where h̄ is the corresponding vector of h(x, y) such that
h(x, λ) ∈ Z[λ][x] is the minimal polynomial of α over Q(λ).

If g ∈ Z[x, y] with degx(g) ≤ n and degy(g) ≤ m such
that g(α, λ) �= 0 then we will show that

‖ḡ‖2 > 2(n+1)(m+1)−1‖h̄‖2 (9)

for a suitable choice of s (Lemma 9).

By v(x, y) we denote the corresponding polynomial of v̄.
From (8) and (9) we know v(α, λ) = 0, thus h(x, λ)|v(x, λ).
In fact h(x, λ) must be ±v(x, λ) since v̄ belongs to the basis
of Ls of which h̄ is an element.

So far we have found h(x, λ) which is the minimal poly-
nomial of α over Q(λ), where α is a root of f(x, λ) with
|α| ≤ 1. Then the polynomial h(x, y) ∈ Z[x, y] can be ob-
tained by replacing λ of h(x, λ) by y. Obviously h(x, λ)
divides f(x, λ). From Lemma 1 we know h(x, y) is a factor
of f(x, y) such that h(α, λ) = 0, and the following lemma
guarantees the irreducibility of h(x, y) in Z[x, y].

Lemma 6. Let h(x, λ) ∈ Z[λ][x] be the minimal polyno-
mial over Q(λ) of an algebraic number α and [Q(λ) : Q] =
M > degy(h(x, y)), where h(x, y) is obtained by replacing λ
of h(x, λ) by y. Then h(x, y) is irreducible in Z[x, y].

Proof. Suppose h(x, y) = h1(x, y)h2(x, y) where h1, h2 ∈
Z[x, y] . Then h(x, λ) = h1(x, λ)h2(x, λ). Since h(x, λ) is the
minimal polynomial of α in Q(λ)[x], we have h1(x, λ) = 1 or
h2(x, λ) = 1. Without loss of generality we set h1(x, λ) = 1.
Since M > degy(h(x, y)) and by using the same technique
in the proof of Lemma 1 we have h1(x, y) = 1. Therefore
h(x, y) is irreducible in Z[x, y].

2.4 A Lower Bound of ‖ḡ‖
For proving (9) we need some lemmas below.

Lemma 7. Let n, m, λ, s, α, βij be as above and g ∈
Z[x, y] with degx(g) ≤ n, degy(g) ≤ m such that g(α, λ) �= 0.
If

|αiλj − βij | ≤ 2−s+1 (10)

for 0 ≤ i ≤ n and 0 ≤ j ≤ m, then

|g(α, λ)− gβ| ≤ 2−s+1(mn + m + n)height(g).

Proof. Obviously.

The following lemma gives a lower bound for |g(α, λ)|
when g(α, λ) �= 0.

Lemma 8. Let f(x, y) be a polynomial in Z[x, y] with
degx(f) = n and degy(f) = m, g(x, y) ∈ Z[x, y] with
degx(g) ≤ n and degy(g) ≤ m. Let λ be an algebraic number
of degree M ≥ 2mn and |λ| ≤ 1/2, α a root of f(x, λ),
h(x, λ) the minimal polynomial3 of α in Z[λ][x]. If g(α, λ) �=
0, then

|g(α, λ)| ≥ ((2mn + 1)
1
2 B)1−M‖pλ‖−2mn

4nB
, (11)

where B = (2m+nheight(f)height(g)(n + 1)
3
2 (m + 1)

5
2 )n.

Proof. If degx(g) = 0, then g(α, y) = g(y) ∈ Z[y]. And
g(λ) �= 0 since M ≥ 2mn > m ≥ degy(g). According to
Lemma 4, we have

|g(λ)| ≥‖ g ‖1−M
1 ‖pλ‖−m. (12)

So (11) follows from (12), which can be easily checked.
Now let degx(g) > 0. Since h(x, λ) is the minimal polyno-

mial of α in Q(λ)[x] and g(α, λ) �= 0 we have gcd(h, g) = 1 if

3Here, h(x, λ) is the minimal polynomial in Q(λ)[x] of
α such that h(x, λ) is of the minimal degree in λ. So
degλ(h(x, λ)) ≤ m.
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we regard h and g as polynomials in Z[x, y], and there exist
polynomials a, b ∈ Z[x, y] such that

a · h + b · g = R, (13)

where R = Resx(g, h) ∈ Z[y]. Since degx(h) ≤ n and
degy(h) ≤ m, we have degy(R) ≤ mdegx(g) + n degy(g) ≤
2mn, degx(a) ≤ degx(g)− 1, degy(a) ≤ m(degx(g)− 1) +
n degy(g), degx(b) ≤ n− 1 and degy(b) ≤ m degx(g)+ (n−
1) degy(g).

Substituting α for x and λ for y in (13), we get

b(α, λ)g(α, λ) = R(λ),

hence

|g(α, λ)| = |R(λ)|
|b(α, λ)| . (14)

Since R(λ) �= 0 we have

|R(λ)| ≥‖ R ‖1−M
1 |pλ|−degy(R)

≥ ((1 + 2mn)1/2‖R‖)1−M‖pλ‖−2mn

≥ ((1 + 2mn)1/2B)1−M‖pλ‖−2mn.

(15)

The first part of (15) is from Lemma 4. The second is from

||R||1 ≤ (1 + degy(R))1/2‖R‖ and degy(R) ≤ 2mn.
Since h(x, y)|f(x, y), from [31] we have

height(h) ≤ ‖h‖ ≤ 2m+n‖f‖
≤ 2m+n(1 + n)

1
2 (1 + m)

1
2 height(f),

and from a Hadamard-type bound on the coefficients of a
determinant of polynomials [11], we know

height(R) ≤ ‖R‖ ≤ B. (16)

So the third part of (15) follows.
From (6) we have |α|i ≤ (1 + 2−s)n ≤ 2, and combining

with |λ| ≤ 1/2 we derive

|b(α, λ)| ≤ height(b)

n−1∑
i=0

2mn−1∑
j=0

|αi||λj |

≤ 4n · height(b)

≤ 4nB.

(17)

The last part of (17) is from (16) also holds with R replaced
by b. Therefore (11) follows from (14), (15) and (17).

Remark 3. As a matter of fact, (17) holds not only from
(16) but also from M ≥ 2mn. Combined with the condition
M > (n+2)m in Lemma 1, we choose the algebraic number
λ such that |λ| ≤ 1/2 and M = 2m(n + 1) in our algorithm.

The following lemma shows how s should be chosen.

Lemma 9. Let f , g, h, ḡ, h̄, m, n, α, λ, βij , B, M be
as above. If

2s ≥ 2
mn+3(m+n)+10

2 ‖f‖(m + 1)2(n + 1)2

(1 + 2mn)
1−M

2 ‖pλ‖−2mn
·AM , (18)

where A = (2
mn+5(m+n)+2

2 ‖f‖2(n+1)
5
2 (m+1)

7
2 )n, then the

following inequalities hold:

‖h̄‖ < 2m+n+1‖f‖(n + 1)(m + 1), (19)

‖ḡ‖ > 2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1). (20)

Proof. Since h divides f we have degx(h) ≤ n and
degy(h) ≤ m so that ‖h̄‖ is well defined, and from [31] we

have height(h) ≤ ‖h‖ ≤ 2m+n‖f‖. Together with h(α, λ) =
0 and Lemma 7, the upper bound on ‖h̄‖ follows:

‖h̄‖2 = ‖h‖2 + 22s|hβ |2

≤ (2m+n‖f‖)2 + 22s(2−s+12m+n‖f‖(mn + n + m))2

= (2m+n‖f‖)2(1 + 4(mn + n + m)2)

< (2m+n+1‖f‖(n + 1)(m + 1))2.

We now wish to prove (20). Since ‖ḡ‖2 = ‖g‖2 + 22s|gβ|2,
we consider two cases:

If ‖g‖ > 2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1), so is |ḡ|.
If ‖g‖ < 2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1), we then

prove

2s|gβ | > 2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1). (21)

From Lemma 7 and Lemma 8 we have

|gβ | ≥ |g(α,λ)| − 2−s+1height(g)(mn + m + n)

≥ (1 + 2mn)
1−M

2 ‖pλ‖−2mn

4nAM

− 2−s+12(mn+3(m+n)+2)/2‖f‖(m + 1)2(n + 1)2

≥ (1 + 2mn)
1−M

2 ‖pλ‖−2mn

8nAM
.

So (21) holds from choosing s as (18).

Lemma 10. Let f, h, n, m, λ, s, Ls be as above such
that (18) holds. If h̄ ∈ Ls, then h = ±v and in particular

‖v̄‖ < 2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1). (22)

Proof. If h̄ ∈ Ls then ‖v̄‖ ≤ 2((m+1)(n+1)−1)/2|h̄| by
(8). So with (19), (20) and from Lemma 9 we have ‖v̄‖ <

2(mn+3(m+n)+2)/2‖f‖(n + 1)(m + 1). This implies h divides
v. Since h̄ ∈ Ls and v̄ is contained in a basis for Ls we
conclude that h = ±v.

Remark 4. Actually, we try the values for n0 = 1, 2, . . . , n
and for each m0 = 0, 1, . . . , m in our algorithm, i.e. the rank
of Ls is N = n0(m + 1) + m0 + 1. If N is the minimal such
that h̄ ∈ Ls, then (22) also holds. A factor of f(x, y) has
obtained. If h̄ /∈ Ls, then N is too small and we need an-
other lattice whose rank is greater than N . If (22) does not
hold for any N , then h = f .

3. THE MAIN ALGORITHM
In this section, we first describe our main algorithm, and

then analyze the correctness and the cost of the algorithm.
We also give some examples to illustrate our algorithm more
clearly and generalize our algorithm to more general cases.

3.1 Description of Our Algorithm
Lemma 10 clearly leads to the following algorithm for fac-

toring a bivariate polynomial.

Algorithm 2.
Input: a bivariate primitive polynomial f(x, y) ∈ Z[x, y]
with degx(f) = n and degy(f) = m, an algebraic number λ
with degree M = 2m(n + 1) and |λ| ≤ 1/2.
Output: all the irreducible factors of f(x, y) in Z[x, y].
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1. Let i0, j0 ∈ N be the maximal degrees of xiyj such
that xiyj |f(x, y). Then f ← f(x, y)/xi0yj0 .

2. repeat

(a) Compute λ̄j ∈ Q for 0 ≤ j ≤ m such that (5)
holds.

(b) fλ̄ ←
∑n

i=0

∑m
j=0 fi,jx

iλ̄j .

(c) If fλ̄ has not a root α such that |α| < 1, then

fλ̄ ← xnfλ̄(1/x).

(d) Apply the algorithm from [30] to compute a 2−s−1-
approximation ᾱ to a root α with absolute value
at most 1 of fλ̄.

(e) Compute βij for 0 ≤ i ≤ n and 0 ≤ j ≤ m such
that (10) holds.

(f) for n0 = 1 to n

for m0 = 0 to m

i. Take s ∈ Z minimal such that (18) holds and
call Algorithm 1 to compute a reduced ba-
sis for Ls of rank N .

ii. If (22) holds, then

A. Output h = v.

B. f ← f/h.

C. If f is not a univariate polynomial, then
goto step 2

else
call Factor(f) and output.

endfor
endfor

(g) Output h = f .

(h) f ← f/h.

3. until f = 1.

Remark 5. Firstly, Algorithm 2 processes a simple case
in the step 1, which guarantees that any root of fλ is not
equal to 0. This implies that βij are also not equal to 0.
Thus Algorithm 1 can be applied to Ls correctly.

Remark 6. It is possible that f is a univariate polyno-
mial after running the step 2→(f)→(ii)→B. When this case
happened, Algorithm 2 calls an arbitrary algorithm Factor
which is used to factorize univariate polynomials and then
outputs the result directly.

3.2 Correctness and Time Analysis
We now analyze the running time of our algorithm.
From (18) we have

s = O(n3m2 + n2m log ‖f‖). (23)

According to [31] a 2−s−1-approximation ᾱ to a root of ab-
solute value at most 1 of fλ̄ can be computed in

O(n2(max{s, n log ‖fλ̄‖})1+ε)

bit operations. Since log ‖fλ̄‖ = O(mn2(n3m2+n2m log ‖f‖))
(cf. (5) and (23)), it will cost

O(mn5(n3m2 + n2m log ‖f‖)1+ε)

bit operations to compute ᾱ.
From [31] we know that O(n̄n2m3(n3m2+n2m log ‖f‖)2+ε),

where n̄ = degx(h), bit operations suffice to compute h.

Since ‖f/h‖ ≤ 2m+n‖f‖, the complete factorization of f
can be found in O(n3m3(n3m2 + n2m log ‖f‖)2+ε) bit oper-
ations. So we have

Theorem 1. Algorithm 2 correctly computes a factoriza-
tion of f(x, y) ∈ Q[x, y] and runs in polynomial time. It uses

O(n3m3(n3m2 + n2m log ‖f‖)2+ε)

bit operations.

Proof. From Sect. 2 and the analysis above, this proof
is obvious.

3.3 Experiments
The described algorithm has been successfully carried out

many times in Maple 11 on the same PC (Pentium IV 2.53G
CPU, 384Mb of main memory). Here we only use several
simple examples to better illustrate some steps of Algorithm
2 in detail.

In the following examples, we always set λ = ( 1
3
)1/2m(n+1).

Then pλ(x) = 3x2m(n+1) − 1, hence ‖pλ‖ =
√

10. A vector
v = (v00, . . . , v0m, v10, . . . , vnm) we get from LLL algorithm
corresponds to a polynomial

∑n
i=0

∑m
j=0 vijx

iyj .

Example 1. f := 2 x2 + 3 xy + 2 x + y + y2.
Then n = 2, m = 2, height(f) = 3 and ‖f‖ =

√
19. We

can first compute the minimal s such that (18) holds. In
this example, s should be 32, while s should be 148 at least
if we adopt the method in [31]. Secondly, we compute the
approximate roots of fλ̄ with Maple 11.

[ − .44254407603573012077377941295814,

− 1.8850881520714602415475588259163 ]

Obviously, we choose

ᾱ = −.44254407603573012077377941295814

with absolute value ≤ 1.
By running Algorithm 2 we get a vector ( 0., 1., 0., 2., 0., 0.,

0., 0., 0., 0., 0.) which corresponds to 2y + x, a factor of
f . After that the algorithm updates f by f ← f/(2y +x) =
1 + y + x. Obviously, the irreducible factorization of f is
(2y + x)(1 + y + x).

Example 2. f := 6 x3 + 8 x2 + 9 x2y + 6 xy + 2 x + y +
3 y2x + y2.

s should be chosen to be 76 in this example. This is about
7 times smaller than the method in [31]. After root find-
ing and LLL computing, Algorithm 2 could give us 3x + 1
which is a factor of f . Updating f and computing an-
other factor y + 2x gives a complete factorization of f as
(1 + y + x) (y + 2 x) (1 + 3x). Worthy of being mentioned,
Algorithm 2 has a more acceptable running time in this ex-
ample, which is slightly faster than factor() in Maple 11.
factor() needs 0.125 s, while Algorithm 2 needs only 0.015 s
to factor f completely.

In Table 1, we show the performance of Algorithm 2 for
some randomly generated polynomials on the same PC. Here
(n, m) represents the bi-degree of the input polynomial, H
represents the height of f and sHL is the s that the method
in [31] should choose, and sal is the minimal s satisfied (18)
in Algorithm 2. tfa is the running time of the built-in func-
tion factor() in Maple 11. However, as can be seen from
Theorem 1, the running time of Algorithm 2 is decided by
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i (n, m) H sHL sal sl tal(s) tfa(s)

1 (2,2) 3 148 32 10 0. 0.
2 (3,2) 9 507 76 16 0.015 0.125
3 (4,4) 3 8000 1024 30 0.047 0.032
4 (4,5) 6 10000 2000 38 0.030 0.047
5 (2,2) 79247 4100 1024 71 0.125 0.187
6 (3,2) 782 500 72 63 0.014 0.
7 (4,4) 25382 8000 1024 108 0.047 0.063
8 (3,6) 3542 31104 1944 77 0.046 0.032

Table 1: Performance of Algorithm 2

the scale of s and ‖f‖. Moreover s from (18) has a scale as
in (23) and grows very fast when n, m or ‖f‖ grows. That
can greatly affect the performance of Algorithm 2. By a lot
of tests, we find that s can be smaller than that from (18) in
most examples. In Table 1, sl represents the minimal s such
that Algorithm 2 correctly gives all the irreducible factors of
f . In fact, every tal in Table 1 is the running time, obtained
by the corresponding sl, of Algorithm 2. From Table 1, we
can see the running time of the examples above is slightly
less than or near to the running time of factor() in Maple
11. The performance of Algorithm 2 can be improved if
the problem of finding the best choice for the parameter s
has been solved. Unfortunately, one such problem is being
considered but can not be attempted at this time.

In addition, Algorithm 2 can be applied to factor multi-
variate polynomials with rational coefficients. By using the
Hilbert irreducibility theorem, we can reduce a multivariate
polynomial to a bivariate one. The basic idea was described
in [6]. After this reduction and running Algorithm 2 we can
find the bivariate polynomial’s factors, from which the fac-
tors of the original multivariate polynomial can be recovered
by using Hensel lifting.

4. CONCLUSION
We overcome the problem arising from the algorithm in

[31] and present a new algorithm for completely factoring
bivariate polynomials in Q[x, y]. The key step of our al-
gorithm is reducing a bivariate polynomial to a univariate
polynomial by substituting an algebraic number of high de-
gree for a variable. And then we use the lattice reduction
basis algorithm to get the desired factors. The running time
of our algorithm is not only (log2(mn))2+ε times less than
the algorithm in [31] but also less than or near to the run-
ning time of the order factor() in Maple 11 for some exam-
ples. Furthermore, our algorithm can be generalized easily
to polynomials with variables more than two.
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